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Turbulent flows subject to solid-body rotation are known to generate steep energy
spectra and two-dimensional columnar vortices. The localness of the dominant energy
transfers responsible for the accumulation of the energy in the two-dimensional
columnar vortices of large horizontal scale remains undetermined. Here, we investigate
the scale-locality of the energy transfers directly contributing to the growth of the
two-dimensional columnar structures observed in the intermediate Rossby number
(Ro) regime. Our approach is to investigate the dynamics of the waves and vortices
separately: we ensure that the two-dimensional columnar structures are not directly
forced so that the vortices can result only from association with wave to vortical
energy transfers. Detailed energy transfers between waves and vortices are computed
as a function of scale, allowing the direct tracking of the role and scales of the
wave—vortex nonlinear interactions in the accumulation of energy in the large two-
dimensional columnar structures. It is shown that the dominant energy transfers
responsible for the generation of a steep two-dimensional spectrum involve direct non-
local energy transfers from small-frequency small-horizontal-scale three-dimensional
waves to large-horizontal-scale two-dimensional columnar vortices. Sensitivity of the
results to changes in resolution and forcing scales is investigated and the non-locality
of the dominant energy transfers leading to the emergence of the columnar vortices is
shown to be robust. The interpretation of the scaling law observed in rotating flows
in the intermediate-Ro regime is revisited in the light of this new finding of dominant
non-locality.
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1. Introduction

The non-dimensional Rossby number is a key parameter in rotating flows. It is
defined as Ro = U/282L ~ 15 /1,, where U is the characteristic flow velocity, §2 the
rotation rate, L the characteristic length scale of the flow, and t, and t, are the
rotation and nonlinear turnover time scales, respectively. Ro is the ratio of magnitudes
of the nonlinear term to the Coriolis acceleration in the Navier—Stokes equations
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expressed in a rotating frame. Turbulent flows dominated by strong rotation have
low Ro and show substantial departure from the classical phenomenology of isotropic
three-dimensional turbulence. Such flows have been the subject of many studies due to
their ubiquity in geophysical and astrophysical flows that can have Ro values of 0.1 or
lower (e.g. Greenspan 1968; Pedlosky 1987).

In the Ro =0 linear limit, the Taylor—Proudman theorem states that the slow
dynamics (quasi-steady) is associated with the velocity field that is invariant in the
direction of the background rotation, corresponding to two-dimensional slow modes,
while the linear time-varying equations have inertial wave solutions with anisotropic
dispersion equation w,, = 5,262 - k/|k|, where s; = &, k is the wavenumber, and {2 is
the rotation vector chosen to be vertical herein (§2 = £27) (Greenspan 1968).

In the small- but non-zero-Ro regime which is relevant for geophysical flows,
nonlinearity is restored, but the linear wave dynamics continues to play a significant
role. Building on the linear results, we keep the linear mode decomposition when
analysing properties of the flow. The zero-frequency w;, = 0 modes are the slow modes
corresponding to the vertically averaged flow or columnar vortices, while the non-zero
frequency modes correspond to inertial waves with |w, | < 2§2. The former form
a two-dimensional three-component field with horizontal vertically averaged (x,y)
components (two-dimensional two-component field u,p) denoted two-dimensional or
vortical; and a third vertical (z) vertically averaged component denoted w. The latter
form a three-dimensional three-component field of inertial waves denoted u;p.

1.1. Effects of rotation on turbulence: focus on two-dimensionalization

Numerous laboratory studies examining turbulent flows dominated by rotation (small
Ro) observed inertial wave propagation, anisotropy development, a reduction of the
rate of energy dissipation, and the emergence of anisotropic large-scale columnar
structures from initially isotropic turbulence leading to a general tendency of the flow
to become two-dimensional as Ro decreases below one (e.g. Hide & Ibbertson 1966;
Ibbetson & Tritton 1975; McEwan 1976; Hopfinger, Browand & Gagne 1982; Jacquin
et al. 1990; Morize & Moisy 2006; Bewley et al. 2007; Staplehurst, Davidson &
Dalziel 2008). Such experimental observations were complemented by works using the
controlled setting of numerical simulations of forced and decaying rotating turbulent
flows (e.g. Bardina, Ferziger & Rogallo 1985; Bartello, Métais & Lesieur 1994;
Hossain 1994; Smith & Waleffe 1999; Chen et al. 2005; Bourouiba & Bartello 2007;
Thiele & Miiller 2009). In decaying turbulence, an intermediate regime has been
identified between the weakly rotating and small-Rossby-number limits (Bourouiba
& Bartello 2007). The intermediate-Ro regime is characterized by a maximum of
nonlinear coupling between two-dimensional and three-dimensional modes as defined
above. A distinct growth of two-dimensional columnar vortices and peak of asymmetry
between cyclonic and anticyclonic columnar vortices is observed at Ro =~ 0.2. More
recent numerical simulations of decaying turbulence also recovered the emergence of
the columnar vortices in the intermediate-Ro regime and an anisotropy in the energy
transfers observed to be damped in the direction of 2 only (Thiele & Miiller 2009).
Both nonlinear (e.g. Zhou 1995; Babin, Mahalov & Nicolaenko 1996; Cambon &
Scott 1999) and linear (Staplehurst et al. 2008) effects were proposed to explain the
growth of the two-dimensional columnar vortices in rotating flows around Ro =1,
but the mechanisms generating and dominating their robust nonlinear growth in
the intermediate-Ro regime in decaying and forced flows remain unclear. Whether
the dominant mechanisms leading to two-dimensionalization in forced and decaying
flows are similar or distinct also remains unclear. Indeed, the emerging picture in
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decaying turbulent flows is that of two-dimensional large-scale columnar vortices
characterized by a slow time scale, while inertial waves are characterized by fast
time scales and observed to cascade energy downscale. In this framework, clearly
the two-dimensional large-scale columnar vortices would quickly contain most of the
energy of the system. In forced turbulent flows the problem is different, particularly
if one takes the approach of forcing the three-dimensional wave modes only. In this
case, it is not obvious that the energy accumulating in the two-dimensional columnar
structures should necessarily end up dominating the total energy budget and even less
clear that if it did, this would be independent of the scale of energy injection used.
We will address this question below after a brief review of the literature on the energy
transfers and scaling laws in rotating turbulence.

1.2. Energy transfers and scaling laws in turbulent rotating flows: observations and theory

Isotropic spectra of total energy with slopes of &~ —2 were observed in flows forced
in the large scales (e.g. Yeung & Zhou 1998; Thiele & Miiller 2009) and reported
for scales smaller than the forcing scale /s for flows forced at intermediate scales
(Smith & Waleffe 1999). Thiele & Miiller (2009) who forced at large scales reported
a horizontal energy spectrum scaling as k=2, but as k> for the horizontal spectrum
for the waves with the larger vertical scales (vertical wavenumber fixed and small).
A —3 scaling of energy spectra in rotating flows forced at intermediate scales has been
discussed in concomitance with a possible inverse cascade of two-dimensional vortical
energy on various occasions. The emerging observed picture involved a combination
of downscale cascade of three-dimensional wave energy coexisting with an inverse
two-dimensional energy cascade for scales larger than the forcing intermediate scale
(e.g Smith & Waleffe 1999; Mininni, Alexakis & Pouquet 2009; Thiele & Miiller
2009, and references therein).

Various scaling arguments for rotating flows arrived at slopes for the total energy
spectrum ranging from —5/3 in the weak rotation regime to —2 for strongly
rotating flows (e.g. Zhou 1995; Canuto & Dubovikov 1997). These scaling arguments
are inspired by classical theories of homogeneous forced turbulence, starting with
Komolgorov’s similarity theory (Kolmogorov 1941) assuming that the nonlinear energy
transfers involve interactions between modes of similar length scales. In Fourier space
this corresponds to triads for which all three wavevector legs are of comparable scale
(e.g. Lesieur 1997). The role of non-local triads of helical modes in non-rotating
flow was discussed in the context of local vs. non-local energy transfers by e.g.
Waleffe (1993) and references therein. In the context of two-dimensionalization of
rotating flows, the relative roles of local and non-local wave—vortex energy transfers
remains unknown: if one assumes that these are local, then inertial waves forced
at scale /; are expected to exchange energy with waves and vortices of comparable
scales. If an inverse cascade of two-dimensional energy and direct cascade of two-
dimensional enstrophy are present as conjectured, then a —3 Kraichnan-type slope is
expected for the two-dimensional energy spectrum at horizontal scales smaller than
Iy, while a —5/3 Kolmogorov-type slope would be expected at scales larger than
l;. These features were not observed in the forced rotating flows reported above.
Instead, flows forced at intermediate scales did show horizontal energy spectra as
steep as —3; however, this was for a range of scales larger, not smaller than I
(e.g. Smith & Waleffe 1999). The different results reported above diverging from
the classical analogues of two-dimensional or three-dimensional energy cascades led
to the suggestion that the —3 scaling for the energy spectrum in forced rotating
three-dimensional turbulence is fundamentally distinct from the scaling of classical
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two-dimensional turbulence (e.g. Bellet et al. 2006). Clearly, determining the nature
of the nonlinear interactions between two-dimensional vortices and three-dimensional
waves is key for the proper understanding and modelling of the energy cascades
observed in turbulent flows dominated by rotation. The focus of our manuscript is
elucidating these processes.

1.3. Questions and outline

In the present paper we examine the nature of the nonlinear interactions responsible
for generating the columnar structures observed in forced rotating flows. In previous
works both two-dimensional and three-dimensional modes were forced at similar
scales and the role of the two-dimensional-three-dimensional interactions relative
to two-dimensional-two-dimensional interactions remained unknown. By contrast,
here we only force the three-dimensional wave modes and extract detailed transfer
statistics to clarify the role of the two-dimensional-three-dimensional interactions in
generating the dominant two-dimensional columnar structures. We observe that the
two-dimensional-three-dimensional interactions lead to the robust columnar structures
observed in the forced flows in the intermediate-Ro regime. In §2 we present the
theoretical background. In § 3 we present the numerical approach used. The existence
of the intermediate-Ro regime is then discussed in §4. The following questions are
addressed in the next two sections: (§ 5) What are the scales and associated local/non-
local nature of the dominant two-dimensional-three-dimensional nonlinear interactions
at the origin of the accumulation of energy into the large columnar structures of the
flow? (§ 6) Are the dominant nonlinear interactions consistent with an inverse energy
cascade mechanism and/or previous scalings found for rotating flows? Contrary to
previous forced turbulence studies, we vary the scale of the forcing to determine the
robustness. Finally, implications of the results and conclusions are found in § 7.

2. Governing equations and modal decomposition
The incompressible equations of motion in a rotating frame are

0
8—?+(u-V)u+2.Q£xu:—Vp+f(u)+D(u), V.u=0, (2.1)

where u = ux + vy + wz is the fluctuation component of zero-mean flow, p is the
pressure field, f(u) and D(u) are the forcing and dissipation operators, respectively.
They are discussed in further detail in § 3. Without loss of generality, we choose the
rotation vector to be aligned with the vertical (direction of the unit vector Z). In a
periodic domain, the equations of motion of the Fourier transform of the velocity field
of a rotating incompressible viscous fluid are

a . . L. . . ;
< - D(k)> un(k7 t) + 2Pnj(k)96j3mum(k) = _5 1 Z Pnjl(k)uj(p’ [)MI(Q» t) +ﬁ1(k)7

ot plk=p+q
Coriolis term

Nonlinear term
(2.2)

where @, is the Fourier transform of the nth-component of the velocity field, k is
the wavenumber, D(k) and f‘,l(k) are the Fourier transforms of the dissipation and
forcing operators, respectively, €, is the alternating tensor and P,;(k) = k;P,; + kP,
with P,; = §8,; — k,k;/k* are the classical projection operators onto a plane perpendicular
to k accounting for the non-divergence of the incompressible flow. Finally, §,, is
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FIGURE 1. Decomposition of the Fourier modes onto V; and W, modes defined by (2.5).

the Kronecker delta, and n, m and j are dummy indices taking values of 1, 2 and 3.
From (2.2), the equation governing the energy spectrum E(k, t) = %|it(k, N *is

(a — 2D(k)> E(k,1) =Tk, 1) + Rel[it (k)f, (k)] (23)
at —_———

Energy input F

*

where * stands for complex conjugate, Re denotes the real part, and T'(k,t) is the
energy transfer spectrum for the Fourier component of wavenumber k quantifying
the energy exchange between the interacting triads of Fourier wavenumbers satisfying
k=p+gq:

1
Th,)= Y T(uklup,uq)zzlmLZ ik, P ()i (p, Din(g, 1), (2.4)

plk=p+q lk=p+q

where Im denotes the imaginary part. The focus of this study is on the particular case
of rotating flows in the intermediate-Rossby-number regime known to be dominated by
columnar zero-frequency vortices; we thus proceed to further decompose the statistics
of the flow in terms of its wave and vortical components.

2.1. Vortical and wave modes: two-dimensional and three-dimensional dynamics

The separation between the dynamics of the modes with non-zero and zero inertial
wave frequencies was observed in previous studies of rotating flows (e.g. Chen et al.
2005; Bourouiba 2008b; Thiele & Miiller 2009) and discussed (e.g. Babin, Mahalov &
Nicolaenko 2000) for highly rotating flows. It is then natural to follow the analysis of
such flows in terms of these two major classes of modes: the wave three-dimensional
modes with non-zero linear inertial wave frequencies (k, # 0) and the vortical zero-
frequency modes (k, = 0) as illustrated in figure 1:

If k€ Vi, ={k | k+#0 and k, = 0} then u(k) = uyp(k;) + w(k;)z, (2.5)
If ke W ={k|k#0 and k, # 0} then u(k) = usp(k), (2.6)

where the vortical modes describe the two-dimensional part of the velocity field
independent of the vertical direction. This two-dimensional field is separated into
a two-component horizontal part u,, and a vertical velocity part wZz. The energy
contributions are then decomposed into three types of modes: E = E;p + Ep + E,,
where Exp = 33 0y () P, By = 335y, W) P, and Esp = 337, lusn(®) .
Using this decomposition, the spectral energy budgets can be written as

0 N
(Bt - Dwk> Esp(k € Wy) = (F + T333 + Tsp3 + T3,-3) (k € W), (2.7)
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a4

(Bt - ka) Exptk € Vi) = (Tayo + Tazn) (k€ Vi), (2.8)
9 4

<8t - DVk> Ew(k € Vk) = (T2w~>w + T33~>w)(k € Vk), (29)

where the Fourier transform of the dissipation operator is also split between equations,
which is discussed in the next section. The input of energy, F(k), into wavemodes
k only appears in the three-dimensional equation as explained earlier. The transfer
spectra account for detailed interactions between modes of various types. For
example T33_.,(k, or k € V}) stands for transfers involving triads in which two three-
dimensional wave modes are exchanging energy with two-dimensional vortical modes.
Following the notation introduced in (2.4), this is written

Tk eVio= > Tpltspysn,). (2.10)
P.9€Wglk=q+p

Similarly, the other types of transfers are defined according to the contribution of each
category of mode. Note that the Tj_,; terms are symmetric in j and k. Note also from
(2.7)~(2.9) that energy in the two-dimensional modes E,p can only grow in association
with nonlinear transfers of the type 33 — 2. We also define the two-dimensional
enstrophy only associated with the two-dimensional Vj, modes as

1
Vop = Z Vop(k) = Z ki Exp(ky) = 3 Z lw, (k) |2, 2.11)

keVy, kpell ke keVy

where w, is the vertical component of the vorticity vector.

3. Numerical approach and forcing schemes

The equations were solved using a standard pseudo-spectral method in a triply
periodic cubic domain of length 2w. The leapfrog scheme with Asselin—Robert filter
to control the computational mode (Asselin 1972) was used for time differencing.
The highest value of the filter parameter was 0.035. The Coriolis parameter
282 was fixed at 22 =22.6s7'. The 2/3 rule was used for de-aliasing, with
Kiruncation = N/3, where N> is the resolution (Boyd 1989). The anisotropy of the
rotating problem favours the use of cylindrical truncation of the Fourier modes.
The horizontal and vertical components of the statistics are examined separately
rather than using a spherical truncation and isotropic spectra and statistics which
are more appropriate for the study of isotropic turbulence. The cylindrical truncation
and associated dissipation operator are defined as |k;| = |k,| = kyuncarion» Where

ky = /K> + k2 and D = (—1)""" v,(V}" + (0/02)*"), where V,, is the horizontal nabla
operator. An eighth-order cylindrical hyperviscosity operator with n =4 is applied
leading to D = —v[(k? + kf,)4 +k%] in Fourier space with ﬁvk =—v(k>+ kﬁ)4 and
ka = —v[(k? + kf,)4 +k%]. No additional large-scale damping is applied. The viscosity
coefficient, v, is given in subsequent sections.

Following an initial spin-up, a quasi-equilibrium is reached. That is, although two-
dimensional energy is observed to continue to grow, other statistics, such as the three-

dimensional energy spectrum and spectral transfers, stabilize. The forcing function in
the nth component of the three-dimensional wave velocity field is

Fulle, 1) = e(k) /i (K, 1), 3.1)
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Forcing type e(k) kp k, Resolution
Fl1 a,(28 — k) (k, — 26) [26 28] #0 1283
F2 a(28 — k) (k, — 32)/k; [28 32] 1283
F3 asz(42 — k) (k, — 39) [39 42] #0 200°
F4 as(5 — ky)(k, — 2) /K3 [2 5] #0 200°
F5 as(108 — k;)(k, — 100)  [100 108] #0 5123
F6 as(5 — ky)(ky — 2) /K2 [2 5] #0 5123

TABLE 1. Types of forcing used. The total input of energy F at each time step is roughly
constant. The amplitudes a; with j = 1-6 are varied to obtain different levels of forcing, F
(see Appendix). The values of a;_¢ were chosen to obtain a steady value of Ro = 0.2 in
each simulation, leading to (a3, a4, as, ag) = (1 x 107%,0.8 x 1075, 5 x 1071, 1 x 1077).

where w’(k,t) is the complex conjugate of the nth Fourier component of the
velocity vector. The advantage of this forcing is that the total energy input
F= ZkRe[it:(k)ﬁl(k)] = 3> ,€(k) is constant throughout the simulation so that the
changes and accumulation of the levels of energy at certain scales are only due to
the dynamics and easily traceable. Note that we take the divergence-free part of the
forcing. The scales of the modes forced are described by e(k) detailed in table 1.
Unless otherwise indicated, Ro is calculated based on the vertical component of the
entire vorticity field, @ =V x u. Then Ro = /[w?]/(2£2).

The resolutions used are 1283, 200°, and 5123. The first two have the advantage
of allowing us to perform a large range of simulations (e.g. 30 simulations as
discussed in the paper and Appendix) and observe the dynamics for a long time. The
last was used to check the robustness of the results to the increase of resolution,
which is clearly confirmed. Our focus is on the clarification of the role of the
nonlinear interactions between waves and vortices in the two-dimensionalization of
rotating forced flows. All the resolutions used ensure the existence of the interactions
known to be important for the key nonlinear triad interactions in rotating flows in
the intermediate-Ro regime as was shown in Bourouiba (2008a). All 1283 and 200°
simulations were initiated with a total seed energy of ~0.01. The 512* simulations
were initiated with a total seed energy of ~1 x 107>,

4. The intermediate-Ro regime in forced flows

We begin with a series of 128* simulations using F1 and F2 spanning a range of
Rossby numbers between ~1.5 and ~8 x 1072. The full range of parameters used are
given in the table in the Appendix. Different Ro were achieved by varying the strength
of the forcing. Except in our higher-Ro simulations, true statistical stationarity was not
reached. However, beyond # = 65, other statistics (e.g. Ro and T,3) did appear to reach
statistical stationary (not shown). For smaller and intermediate values of Ro, E,p/E
continued to grow throughout the simulation, leading to an increase of the total energy,
while E;p/E decreased with time for all simulations in the intermediate-Ro range for
all forcings (see examples of normalized time series for F1 in figure 2a,b).

A useful measure of the coupling between two-dimensional and three-dimensional
modes is the time-averaged cumulative energy transfer between the three-dimensional
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FIGURE 2. Top: time series of (a) E,p/E and (b) E;p/E for flow forced by F1. Bottom:
(c) integrated transfer T,3/F(Ro) shown as a function of the Rossby number for simulations
forced with forcings F1 and F2; (d) snapshot of the total vorticity field for a simulation in the
intermediate-Ro range forced by forcing F4 at 200°, shown at time ¢ = 142.5 and normalized
by the Coriolis parameter (f =282 =22.6s71).

and the two-dimensional modes:

Tr3(Ro) = ) _ Tss 2 (k, Ro), @.1)

keVy

where the overbar denotes the time-average.

Figure 2(c) shows the Ro dependence of time averages of total 7»; normalized by
the corresponding F and averaged over the time window f € [65 125]. Clearly the
cumulative energy exchange between the two-dimensional and the three-dimensional
modes is positive and peaks at intermediate Ro = 0.19. The quantity is positive
indicating an overall injection of energy from the waves to the vortices. This is
observed for both F1 and F2, which are forcing the inertial waves in small and
large horizontal (and small vertical) scales, respectively. This result is reminiscent of
the intermediate-Ro regime identified in decaying rotating turbulence in Bourouiba
& Bartello (2007). Figure 2(d) shows a snapshot of the vorticity field for the
simulation at higher resolution forced with F4 at large horizontal scales and for
which Ro is chosen to be in the intermediate regime. We observe the appearance
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FIGURE 3. Top: time-averaged horizontal energy spectra normalized by the input of energy
F averaged on f € [65 85] showing (a) the energy in the two-dimensional modes and (b)
the energy in the three-dimensional wave modes when the flow is forced by F1. Bottom:
time-averaged spectra in ¢ € [100 125] Ep(k,), Esp(k;) for the flows forced with (c) F3, 200°
and (d) F5, 512°.

of the dominant vortices in this flow as well (snapshots for F1 and F2, not
shown) with a marked cyclone—anticyclone asymmetry, showing clearly that the
two-dimensional—three-dimensional interactions are forcing the vortical modes. Indeed
recall that previous simulations used a forcing of both two-dimensional and three-
dimensional modes, hence the presence of the intermediate-Ro regime for such forced
flows and the dominant nature of the two-dimensional-three-dimensional interactions
over directly forced two-dimensional-two-dimensional interactions was not determined.
Here, we showed its existence and robustness to change of forcing scale of the
three-dimensional modes. As noted previously, the only input of energy into the
two-dimensional modes in these simulations originates from the term (2.10) in (2.8).
We now focus on the characterization of the key three-dimensional-two-dimensional
nonlinear interactions identified to be at the origin of the increase of vortical energy
E,p observed.

It is useful to first consider the horizontal energy spectra of both waves and vortices
(e.g. figure 3a,b). In the lower-resolution simulations, the time-averaged spectra in the
high-Ro regime are not significantly affected by rotation for either forcing type. That
is, the E,p(k,) and Esp(k,) spectra have shapes similar both to one another and to
what one would expect for isotropic turbulence. As Ro decreases, E,p(k;,) increases
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markedly at large scales and a steepening of the spectral slope results. This becomes
more pronounced as Ro decreases down towards 0.2, below which the trend reverses
as seen for example for the simulations forced with F1 in figure 3(a,b). Similar spectra
for the 200° and 512° simulation using F3 and F5, which are analogous to forcing F1
at 1283, are shown in figure 3(c,d). The E3p(k;) are peaked near the forcing scale and
have positive slopes. The E,p(k,) have a peak at about k, = 3—4 and slopes steeper
than —3. Note that much longer simulations at 200° resolution suggest that the peak
‘condensates’ onto the gravest k;, increases in the long time limit (not shown).

5. Local or non-local dominant two-dimensional-three-dimensional energy
transfers?

We next focus on a more detailed description of T53_,,(ky, t) in the intermediate-Ro
regime, where the overall T,;(Ro) is the strongest. For this, we use 200° and 5123
resolutions with forcing schemes (F3, F4) and (F5, F6), respectively. The forcing
amplitudes were tuned so that Ro ~ 0.2.

We wish to better describe the 33 — 2 transfers. In particular, are the dominant
nonlinear energy transfers between three-dimensional and two-dimensional modes
identified to be at the origin of the intermediate-Ro regime local or non-local in
scale? Recall that in isotropic three-dimensional turbulence, a triad of modes p, q,k
with kK +p 4+ g = 0 is typically said to be local if s <2 and non-local if s > 2, where
s(k, p, q) = max(k, p, g)/ min(k, p, q) (e.g. Zhou 1993a,b; Lesieur 1997; Domaradzki
& Carati 2007). Stricter definitions can also be found. These include requiring the
ratio between the middle-to-smaller or larger-to-middle wavenumbers to be greater
than 2 (e.g. Domaradski 1988). In two-dimensional turbulence, a ratio of the largest-
to-smallest leg of the triad larger than 4 (e.g. Watanabe & Shepherd 2001) was used
to define non-locality. One also needs to distinguish between local triads and local
transfers. A local interaction (via local triad) can only be responsible for a local
energy transfer; however, a non-local triad can lead to both local and non-local energy
transfers.

In our problem, recall that T3;_,,(k) measures the energy exchange between a given
two-dimensional mode of wavevector k € V; and all the combinations of pairs of
three-dimensional modes (p,q) € Wy such that p + ¢ = k. For these triads, this
equation implies that the vertical components of the wavenumbers ¢ and p are
equal in magnitude and have opposite signs, i.e. g, = —p,. In order to address the
non-local/local nature of the 33 — 2 triads and energy transfers we use this fact to
further decompose the energy spectra T3;_.,(k) based on the scale of the horizontal
wavenumbers ¢y, p;, k, involved in the injection of energy into the two-dimensional
vortical modes. We proceed by classifying the horizontal scales into three main
disjoint regions A, B, and C. These correspond to small, medium and high horizontal
wavenumbers, respectively. The T3;_.,(k € V;) transfer into the modes (kj, 0) is then
the sum of contributions from the wave modes for which the legs (g, and p,) both lie
in A, both in B, both in C, one in A and one in B, etc. We will refer to these various
contributions as AA, BB, CC, AB, AC, and BC. For example, Tg‘féz(km |P3p, q3p) has
either p;p or gsp in A and the other in B, with an overall contribution

T keV= > T(eyltpes tgep). (5.1)
P.q< W lk=q+p

The boundaries between the regions are chosen so that the stricter definition of non-
locality can be detected, i.e. there is a ratio of at least 2 between all k, in C and all
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FIGURE 4. Detailed time-averaged horizontal energy transfer spectra for forcing schemes at
the small horizontal scales. (a) T4y, ,(ks) defined in (5.1) for flow forced with F3 (200°). R
is either region A or B or C. T3, (ky), T22 ,(ky), T5E 5 (ki) TH2 , (kn), ToC 5 (ki) TEE ., (k)
are labelled AA, BB, CC, AB, AC, and BC, respectively. The vertical lines mark the borders
between the disjoint regions A, B, and C. (b) T3C3‘;2(kh) averaged between ¢t = 100 and
t = 125 and filtered according to the vertical wavenumber |k,| of the three-dimensional modes.
Bottom: same as (a), but for (c) the lowest resolution 128° and forcing F1 and (d) the highest
resolutions 512 and forcing F5.

in A. Moreover, the limit between region C and B is chosen to ensure that a ratio of at
least 2 is satisfied between the small-scale forced modes and the boundary of region B.
For example, at 200°, the boundary between A and B was chosen as k, = 9.75 and
between B and C as k, = 19.5, ensuring that the forced modes k;, € [39 42] (F3) in
region C are at least twice as large as the k;, of all the modes in region B. Similarly
for 5123 (128%) F5 (F1) with forced modes k;, € [100 108] (k; € [26 28]), leading to
a boundary between A and B at k, =25 (k, = 6.5) and between B and C at k, =50
(kyp = 13).

Figure 4(a) compares the time-averaged contributions to 7T33;_.,(k,) for the 200°
simulation forced with F3. These are also compared to the results obtained from
the lower resolution 1283 forced with F1 and the highest resolutions 512 forced
with F5. Positive values at a given k;, correspond to three-dimensional modes adding
energy into two-dimensional modes at that k,. Thus, for example, in region A, the
curve denoted AA corresponds to 33 — 2 transfers of type AA — A, in which all
three modes of the triad are in region A. In region B, the same curve corresponds
to AA — B transfers, in which the two three-dimensional modes are in region A
and the two-dimensional mode of the triad is in region B. From the figure, we
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conclude that T3;_,,(k;) is clearly dominated by the energetic contribution of triads
of type CC — A. This is also the case for smaller resolutions with forcing in the
small horizontal scales (F1) and larger resolutions with forcing also in the small
horizontal scales (F5) shown in figures 4(c) and 4(d), respectively. Figure 4(b) shows
TSE ,(ky) after a further filtering according to the vertical wavenumber of the two
three-dimensional modes. Most of the 33 — 2 energy transfer of type CC — A is
seen to involve three-dimensional wave modes with vertical wavenumbers, |k,| < 26.
These are modes with relatively small linear frequencies wy. From both graphs, it is
evident that the substantial portion of the energy transfers from triads 33 — 2 are
from three-dimensional modes with k;, > 20 and |k,| < 26 to two-dimensional modes
with kj, ~ 3—4. By classical definitions, such triads and energy transfers are clearly
non-local.

That the non-local CC — A transfers should be dominant is odd in that one would
normally expect 33 — 2 exchanges to be between like horizontal scales, i.e. in local
triads as observed in isotropic turbulence. Is it simply that most of the transfer is
from the forced three-dimensional modes (which happen to be in region C for F1, F5)
directly into the large k, scales of region A?

To address this last point, we considered a series of simulations of increasing
resolution all forced in the large scales (small k). We use F2 at 128°, F4 at
200°, and F6 at 5123, If the non-locality observed above is an artifact of the small
three-dimensional scale forcing and a large concentration of energy in the larger
horizontal two-dimensional columnar vortices, then the new F2, F4, F6 large three-
dimensional scale forcings should lead to dominant local interactions of type AA — A.
In fact, these three forcings would allow local in scale AA — A interactions to
dominate the signal of an artificial non-local three-dimensional-to-two-dimensional
energy transfer mechanisms of type CC — A. The horizontal energy transfer spectra
for these simulations are shown in figure 5. As with the forcing in small horizontal
scales F1, F3, and F5, the 33 — 2 energy transfers for F2, F4, and F6 are dominated
by energy exchanges of type CC — A, which are again non-local. The increase of
resolution to 512° with forcing F6 shows clearly the robustness of this characteristic
non-locality. The non-locality is robust and not induced by a particular forcing
in region C. The mechanism of two-dimensionalization in homogeneous rotating
turbulence clearly appears to involve a direct injection of energy from the small
frequencies elongated three-dimensional wave modes (large vertical scales) into the
larger columnar two-dimensional structures of the flow. This is in contrast to the more
classical view whereby energy injected into two-dimensional modes at smaller scales,
locally, would cascade to larger scales in association with two-dimensional vortical
dynamics and a —5/3 energy spectrum.

6. Discussion of the two-dimensional dynamics

Recall from figure 3 that for the intermediate values of Ro of interest here, E,p(ky)
has slopes greater than —3 (also observed for simulations with higher resolution in the
present work and other works (e.g. Smith & Waleffe 1999; Chen et al. 2005)). Similar
spectral slopes are also familiar in classical two-dimensional turbulence; however,
there, the ~ —3 slopes are to the right of the forcing scale, whereas here they are
to the left. Nevertheless, although the ~ —3 slope lies to the left of the (three-
dimensional) forcing in our simulations, we showed that it particularly lies to the
right of where the bulk of the 33 — 2 energy is injected into the two-dimensional
modes occurs. As such, the &~ —3 slope observed to the left of the forcing in



Non-local two-dimensionalization of rotating flows 13

(@ 17 N ® 77
S 6 S 6t
< 5 ~ RS 51
s 4 = 4}
N N
) 3 N 3t
<1 1
X 2 N IS 2F
= e
< : L
0 = 0F
-1 -1 Al B| C
-2 -2
100 10! 102 100 101 102
(o (d)

kn TRR , (ki)

knTER (k)

-1.0 " . .
100 10! 102 100 10! 102

FIGURE 5. Detailed time-averaged horizontal energy transfer spectra for forcing schemes
at the large horizontal scales. (a,b) Same as figure 4 for the 200° flow forced in the large
horizontal scales using F4 (time averages taken for ¢ between 100 and 125). Bottom: same
as(a), but for the (c) the lowest resolution 128* and forcing F2 and (d) highest resolutions
5123 and forcing F6.

rotating turbulence (e.g. Chen et al. 2005) need not be associated with an inverse
cascade of two-dimensional energy. Instead, it is more natural to think of the two-
dimensional modes as ‘forced’ at the large scale (e.g. by T3;_,) and of the =~ —3
slope as associated with a downscale enstrophy transfer. Indeed, recall that the two-
dimensional mode dynamics is governed by (2.8) which can be shown to conserve
both energy E,p and two-dimensional enstrophy V,p in the limit of large rotation rate
(Bourouiba 2008b). Moreover, if one considers the term 73;_,, as a forcing, then (2.8)
becomes the analogue of that governing forced classical two-dimensional turbulence. It
is then natural to consider the possibility of enstrophy cascade in the regimes where
the two-dimensional/three-dimensional mode decomposition is valid (intermediate- and
small-Ro regimes).

The two-dimensional enstrophy transfers are displayed for the 200° and 512°
simulations forced in medium to small scales F3 and F5 in figures 6 and 7,
respectively. Clearly, the energy injected into the large scales directly by the non-
local 33 — 2 interactions is in turn transferred to even larger vortical scales by
the vortex—vortex interactions 22 — 2 (panels a). The enstrophy injected into the
two-dimensional modes by the 33 — 2 nonlinear interactions is transferred from
the injection scale to higher dissipation scales by vortex—vortex interactions 22 — 2
interactions as well (panels b). The interactions of type 33 — w feed E, at medium
to large scales and the 2w — w interactions transfer this energy downscale to the
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dissipation (panels c¢). Finally, the spectra of V,p and E,, both have slopes close to or
steeper than —1 in the range of k;, over which V,p and E,, are transferred downscale
(panels d). These findings are consistent with what would be expected for a passive
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scalar w advected in a forced two-dimensional turbulent flow (Lesieur 1997). The
increase of resolution confirmed the robustness of these findings as well.

Finally, one could argue that local energy transfers might be hidden by non-local
interactions associated with the steep two-dimensional energy spectrum. In this case,
one might anticipate a —5/3 two-dimensional energy spectrum to appear early on and
to steepen to a —3 slope as finite box size effects become relevant. For example a
—3 or steeper spectrum was observed in classical two-dimensional turbulence with no
large-scale dissipation (e.g. Chertkov et al. 2007). In order to test this latter scenario,
we examine the time evolution of the two-dimensional energy spectra. Figure 8(a,b)
shows the energy spectra obtained with the small-scale forcing F5 at 512° averaged
over a series of time intervals. Clearly, the emergence of the steep spectrum of
two-dimensional energy appears early in the temporal flow evolution, prior to any
possible influence of a condensate or influence of the larger scales of the finite domain.
In figure 8(c,d), we finish our discussion with the time evolution for the forcing F6
in large horizontal scales. Once again, we confirm the early emergence of the steep
two-dimensional spectra associated with the dominant direct injection of energy via
non-local CC — A interactions even when local interactions with the forcing scale in
region A could have been favoured.

7. Summary and conclusion

We presented the results of a study of forced rotating turbulence over a range of
Ro and with various resolutions and forcing scales. The focus of the work was on
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nonlinear energy transfers between inertial waves and the two-dimensional columnar
vortices that are known to emerge in strongly rotating flows. Using numerical
experiments and detailed energy transfers we observe that the two-dimensional-three-
dimensional interactions lead to the robust columnar structures observed in forced
flows and to the existence of the intermediate-Ro regime. We then addressed the
following questions. (a¢) What are the scales and associated local/non-local nature
of the dominant two-dimensional-three-dimensional nonlinear interactions at the
origin of the accumulation of energy into the large columnar structures of the
flow? (b) Are the dominant nonlinear interactions consistent with an inverse energy
cascade mechanism and/or previous scalings found for rotating flows? In contrast
to previous studies, only the three-dimensional wave modes were forced directly
here; as such, all energy in the two-dimensional modes resulted from wave—vortex
(two-dimensional-three-dimensional) nonlinear interactions and energy transfers. The
following points summarize our findings.

(i) We confirmed that an intermediate-Ro range similar to that seen previously in
decaying simulations of rotating turbulence also emerges in sustained flows even if
the forcing is only applied to the wave modes.

(i1)) We showed that most of the energy transfers leading to the growth of the two-
dimensional columnar vortices in the intermediate-Ro regime are carried out
by non-local (in scale) interactions. They involve two wave modes with small
horizontal scales and small frequency and a large horizontal columnar vortex
mode. These non-local triads are responsible for non-local energy transfers in
favour of the two-dimensional vortices. They dominate the energy transfers even
when local wave—vortex interactions are favoured by forcing configurations.

(iii)) We examined the implications of non-locality. The direct injection of energy into
large-horizontal-scale vortical modes suggested the possibility of interpreting the
steep slope observed in simulations of rotating turbulence in terms of a two-
dimensional enstrophy cascade, and not in terms of an inverse cascade mechanism
specific to rotating flows. Instead, the two-dimensional dynamics of forced rotating
flows in the intermediate-Rossby-number regime could be better thought of as
analogous to two-dimensional flow forced at its largest scales.

(iv) We showed that roughly doubling the resolution twice and changing the scale of
the forcing does not modify the strong non-local signal captured by the detailed
transfer spectra. The dominant non-locality of wave—vortex interactions at the
origin of the growth of the vortices and steep two-dimensional energy spectra
consistent with a downscale transfer of two-dimensional enstrophy is robust.

In sum, the following picture for the dynamics of the intermediate-Ro range
in forced flows appears to emerge: regardless of the scale of the forcing, three-
dimensional waves of small linear inertial frequency and small horizontal scale
preferentially interact with larger horizontal two-dimensional vortices, injecting energy
into these directly and despite the clear non-locality in scale. The image of local
transfers of three-dimensional to two-dimensional energy followed by a long inertial
range of an inverse two-dimensional energy cascade is to be put aside in this
regime. Finally, we note that non-local energy transfers have also been noted in
other anisotropic systems such as magnetohydrodynamic turbulence, where both non-
local triads and non-local transfers characterize the exchange of energy between the
velocity and magnetic field. Our findings suggest that modelling the dominant coupling
between three-dimensional and two-dimensional vortices requires that the non-locality
of the nonlinear interactions in the intermediate-Ro regime be accounted for. An
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Forcing 1 (Cyl) Forcing 2 (Disk)
Ro ROQD F At Ro ROZD F At

0.1 0036 33x107° 26x107* 0.08 004 49x107° 26x1073
0.12 0.046 45x1073 26x10% 011 006 99x10% 26x1073
0.19 007 12x1072 26x107 024 011 48x1072 26x1073
031 0.093 42x1072 26x107 032 0.128 9.6x 1072 2.6x 1073
036 0.106 58x1072 26x107* 047 018 236x107" 2.6x 1073
043 0.113 9.6x 1072 26x107° 054 02 33x 107" 2.6x107°
048 0.112 127x107" 22x1073 0.62 0.2 47 %1071 2.6x1073
0.6 0.123 218x107! 1.5x107% 072 022 65x107! 26x1073
0.67 0.119 3.11x107' 15x107% 0.85 026 93x107" 19x107?

0.77 0.120 433 x 107! 1.5x10% 099 03 1.4 1.9 x 1073
094 0.117 7.22x107" 1.5x107% 1.15 0.2 1.87 1.9 x 1073
0.98 0.120 823x107! 1.5x107% 136 0.19 2.8 1.6 x 1073
1.5  0.166 3 1.5x 107 152 0.21 3.7 1.6 x 1073
23 0242 9.7 1.5x 1073 1.96 0.26 74 1.6 x 1073

TABLE 2. Ro, Royp, forcing F, and time step Ar for each simulation of the set forced
with the forcing F1 (left columns), and F2 (right columns). The hyperviscosity coefficient
used for both sets is v = 1.8 x 1072* and the rotation rate is f =282 =22.6 s7.

example of such modelling in classical two-dimensional turbulence can be found in
e.g. Nazarenko & Laval (2000).
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Appendix

In this appendix the parameters used for the series of simulations using F1 and F2
are given (table 2).
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